Contrôle TD n° 1

L1/S2, Mathématiques, groupe I

23 Février 2024

Exercice 1

On considère la suite (u_n) définie par $u_0 = 0$ et la relation de récurrence $u_{n+1} = 2u_n + 1$. Montrer que la suite (v_n) définie par $v_n = u_n + 1$ est géometrique de raison 2. En déduire l'expression générale de v_n puis celle de u_n . Déterminer $\lim_{n\to\infty} u_n$.

Solution : Soit la suite (u_n) définie par la relation de récurrence $u_{n+1} = 2u_n + 1$ et $v_n = u_n + 1$. Si on considère v_{n+1} alors on obtient

$$v_{n+1} = u_{n+1} + 1$$

= $(2u_n + 1) + 1$ (en utilisant que $u_{n+1} = 2u_n + 1$)
= $2u_n + 2 = 2(u_n + 1)$.

Comme $v_n = u_n + 1$, on obtient une relation de récurrence pour la suite (v_n) donnée par $v_{n+1} = 2v_n$, donc (v_n) est une suite géometrique de raison r = 2. Par la formule vue en TD on a que la formule générale pour (v_n) est $v_n = v_0 r^n$ pour $n \ge 0$, et comme $v_0 = 1$, c'est-à-dire $v_n = 2^n$. Avec cette expression, on reobtient que $v_n = 2^n = u_n + 1$ pour tout $n \ge 0$, donc $u_n = 2^n - 1$. En utilisant l'expression prédédent on a $\lim_{n \to +\infty} u_n = \infty$.

Exercice 2

Déterminer la limite en a de la fonction f dans chacun des cas suivants :

1.
$$f(x) = \frac{2x^2 + 4}{7x^2 + x + 9}$$
; $a = -\infty$.

Solution: La fonction f(x) est le quotient de deux pôlynomes $p(x) = 2x^2 + 4$ et $q(x) = 7x^2 + x + 9$ oú $\lim_{x\to a} p(x) = +\infty$ et aussi $\lim_{x\to a} q(x) = +\infty$, donc on a une forme indeterminée ∞/∞ . On regarde que la function f(x) peut être écrit de la forme suivante :

$$f(x) = \frac{2x^2 + 4}{7x^2 + x + 9}$$
$$= \frac{x^2(2 + 4/x^2)}{x^2(7 + 1/x + 9/x^2)}$$
$$= \frac{2 + 4/x^2}{7 + 1/x + 9/x^2}$$

Donc ou peut l'écrire comme un quotient de deux fonctions $\tilde{p}(x)=2+4/x^2$ et $\tilde{q}(x)=7+1/x+9/x^2$, d'où on obtient $\lim_{x\to-\infty}\tilde{p}(x)=2$ et $\lim_{x\to-\infty}\tilde{q}(x)=7$. Comme les limites de $\tilde{p}(x)$ et $\tilde{q}(x)$ existent, alors la limite de f(x) dans $a=-\infty$ est le quotient des limites des fonctions $\tilde{p}(x)$ et $\tilde{q}(x)$ dans $a=-\infty$, alors $\lim_{x\to-\infty}f(x)=\frac{2}{7}$.

2. $f(x) = xe^x$; $a = \infty$.

Solution : La fonction f est le produit de deux fonctions, q(x) = x et $r(x) = e^x$. Comme $\lim_{x \to +\infty} x = +\infty$ et pareil pour $\lim_{x \to +\infty} e^x = +\infty$, alors $\lim_{x \to +\infty} x e^x = +\infty$.

1

Exercice 3

1. Calculer la dérivée de la fonction $f(x) = \frac{\ln(x)}{1 + x^3}$.

Solution : On écrit la fonction comme le quotient de deux fonctions $u(x) = \ln(x)$ et $v(x) = 1 + x^3$. La formule pour la dérivée du quotient nous donne

$$f'(x) = \left(\frac{u(x)}{v(x)}\right)'$$
$$= \frac{u'(x)v(x) - u(x)v'(x)}{(v(x))^2}$$

comme $u'(x) = \frac{1}{x}$ et $v'(x) = 3x^2$, en reemplaçant finalement on obtient

$$f'(x) = \frac{\frac{1}{x}(1+x^3) - \ln(x)3x^2}{(1+x^3)^2}$$
$$= \frac{1+x^3 - 3x^3\ln(x)}{x(1+x^3)^2}.$$

2. Déterminer le $DL_2(0)$ de la fonction $f(x) = xe^{2x}$.

Solution : Pour déterminer le $DL_2(0)$ il faut déterminer f'(0) et f''(0). Comme la fonction f est le produit de deux fonctions, on applique la formule la dérivée de produit, alors on obtient que

$$f'(x) = 1 \cdot e^{2x} + x \cdot (2e^{2x}) = 2xe^{2x} + e^{2x} = (2x+1)e^{2x}.$$

en applicant la dérivée de produit pour obtenir f''(x) on a

$$f''(x) = 2 \cdot e^{2x} + (2x+1) \cdot 2e^{2x} = 4(x+1)e^{2x}.$$

Alors on obtient que f'(0) = 1 et f''(x) = 4, donc le $DL_2(0)$ de f est

$$f(x) = 0 + 1 \cdot (x - 0) + \frac{4}{2}(x - 0)^{2} + \epsilon(x)$$
$$= x + 2x^{2} + \epsilon(x).$$