Contrôle TD n° 2

Licence 1er année, Math2C

27 mars 2024

Exercice 1

Résoudre les équations differentielles suivantes:

1.
$$y'' + y' - 6y = xe^{-x} + e^{4x}$$
;

Le polynôme associé à cette équation est $P(r) = r^2 + r - 6$ d'où on obtient les racines $r_1 = -3$ et $r_2 = 2$, alors la solution homogène est $y_h(x) = c_1 e^{-3x} + c_2 e^{2x}$. Puis que $\alpha_1 = -1$ et $\alpha_2 = 4$ ne sont pas des racines de P(r), on a que la solution particulière est de la forme

$$y_p(x) = y_{p_1}(x) + y_{p_2}(x)$$

= $(ax + b)e^{-x} + ce^{4x}$.

Pour déterminer les constantes a, b et c on fait de qui suit :

$$y'_{p_1}(x) = -(ax+b)e^{-x} + ae^{-x}$$

$$y''_{p_1}(x) = (ax+b)e^{-x} - 2ae^{-x}$$

alors,

$$y_{p_1}''(x) + y_{p_1}'(x) - 6y_{p_1}(x) = (ax+b)e^{-x} - 2ae^{-x} - (ax+b)e^{-x} + ae^{-x} - 6(ax+b)e^{-x}$$
$$= -6(ax+b)e^{-x} - ae^{-x}$$
$$= (-6ax - 6b - a)e^{-x} = xe^{-x}.$$

Alors -6a=1 et -6b-a=0, c'est-à-dire $y_{p_1}(x)=\left(-\frac{x}{6}+\frac{1}{36}\right)e^{-x}$. Pour $y_{p_2}(x)$ on a $y'_{p_2}(x)=4ce^{4x}$ et $y''_{p_2}(x)=16ce^{4x}$, alors

$$y_{p_2}''(x) + y_{p_2}'(x) - 6y_{p_2}(x) = (16c + 4c - 6c)e^{4x}$$
$$= 14ce^{4x} = e^{4x}.$$

Alors on obtient la solution

$$y(x) = c_1 e^{-3x} + c_2 e^{2x} + \left(-\frac{x}{6} + \frac{1}{36}\right) e^{-x} + \frac{1}{14} e^{4x}.$$

2.
$$2yy' + \frac{1+y^2}{x} = 0;$$

Cette équation est de varibles separées, alors

$$2yy' + \frac{1+y^2}{x} = 0 \iff \frac{2yy'}{1+y^2} = -\frac{1}{x}$$

$$\implies \ln(1+y^2) = -\ln|x| + c$$

$$\iff \ln(1+y^2) = \ln|cx^{-1}|$$

$$\iff 1+y^2 = c|x|^{-1}$$

$$\iff y(x) = \pm \sqrt{\frac{c}{|x|} - 1}.$$

1 Exercice 2

Considere l'équation differentielle $x^2y'' + 5xy' - 21y = 0$:

1. Soit $\mathcal S$ l'ensemble des solutions réelles de l'équation. Montrer que S est un espace vectoriel réel.

Clarement $0 \in \mathcal{S}$. Soient $y_1, y_2 \in \mathcal{S}$ deux solutions et $\alpha, \beta \in \mathbb{R}$. On pose $y(x) := \alpha y_1(x) + \beta y_2(x)$, alors $y'(x) = \alpha y_1'(x) + \beta y_2'(x)$ et $y''(x) = \alpha y_1''(x) + \beta y_2''(x)$, si on remplace y dans l'équation

$$x^{2}y'' + 5xy' - 21y = x^{2} (\alpha y_{1}'' + \beta y_{2}'') + 5x (\alpha y_{1}' + \beta y_{2}') - 21 (\alpha y_{1} + \beta y_{2})$$

$$= \alpha \underbrace{(x^{2}y_{1}'' + 5xy_{1}' - 21y_{1})}_{=0} + \beta \underbrace{(x^{2}y_{2}'' + 5xy_{2}' - 21y_{2})}_{=0}$$

$$= 0$$

Alors $y \in \mathcal{S}$.

2. En sachant que les solutions ont la forme $x \mapsto x^n$, où $n \in \mathbb{R}$, trouver une base de \mathcal{S} . Soit $y = x^n$ une solution, alors $y'(x) = nx^{n-1}$ et $y''(x) = n(n-1)x^{n-2}$. En utilisant les expression on a

$$x^{2}y'' + 5xy' - 21y = x^{2}n(n-1)x^{n-2} + 5xnx^{n-1} - 21x^{n}$$

$$= x^{n} (n(n-1) + 5n - 21)$$

$$= x^{n} (n^{2} + 4n - 21)$$

$$= 0,$$

d'où on obtient que $n^2 + 4n + 21 = 0$ alors $n_1 = -7$ et $n_2 = 3$. Donc la solution de l'équation est

$$y(x) = \frac{c_1}{x^7} + c_2 x^3.$$

Une base pour S est $\{x^{-7}, x^3\}$.

3. Trouver la solution de $x^2y'' + 5xy' - 21y = x^2$

En sachant que las solutions de l'équation homogène associée est $y_1(x) = \frac{1}{x^7}$ et $y_2(x) = x^3$, on peut utiliser la méthode du wrosnkien. Dans sa forme canonique, la fonction q(x) est égale à 1, et le wronskien est

$$W[y_1, y_2](x) = -\frac{-7}{x^8} \cdot x^3 + \frac{1}{x^7} \cdot 3x^2 = \frac{10}{x^5}$$

2

Puis

$$u(x) = -\int^{x} \frac{y_{2}(t)q(t)}{W[y_{1}, y_{2}](t)} dt$$

$$= -\int^{x} \frac{t^{3} \cdot 1 \cdot t^{5}}{10} dt$$

$$= -\frac{x^{9}}{90}$$

$$v(x) = \int^{x} \frac{y_{1}(t)q(t)}{W[y_{1}, y_{2}](t)} dt$$

$$= \int^{x} \frac{-t^{5}}{10t^{7}} dt$$

$$= \int^{x} \frac{1}{10t^{2}} dt = -\frac{1}{10x}$$

Alors la solution particulière est de la forme

$$y_p(x) = u(x)y_1(x) + v(x)y_2(x)$$
$$= -\frac{x^9}{90} \cdot \frac{1}{x^7} - \frac{1}{10x} \cdot x^3 = -\frac{x^2}{9}$$

et finalement,
$$y(x) = \frac{c_1}{x^7} + c_2 x^3 - \frac{x^2}{9}$$
.

Exercice 2

Résoudre le problème de Cauchy suivant:

$$\begin{cases} y'' + 2y' - 3y = 0, \\ y(0) = 1, \\ y'(0) = 2. \end{cases}$$
 (1)

œ Le polynôme associé à l'équation est $P(r)=r^2+2r-3$, alors les racines sont $r_1=1$ et $r_2=-3$, donc la solution est

$$y(x) = c_1 e^x + c_2 e^{-3x}$$

Pour déterminer les constantes c_1 et c_2 , on dérive la fonction y(x) en résultant $y'(x) = c_1 e^x - 3c_2 e^{-3x}$, alors

$$y(0) = c_1 + c_2 = 1$$

$$y'(0) = c_1 - 3c_2 = 2$$

alors
$$c_2 = -1/4$$
 et $c_1 = 5/4$, puis $y(x) = \frac{5e^{-x}}{4} - \frac{e^{3x}}{4}$