Contrôle TD n° 1 : Version corrigée

Licence 1^{er} année, Math2C, groupe MP2-MP

21 Février 2024

Exercice 1

Trouver la primite de les fonctions suivantes et indiquer le domaine de définition de chaque primitive:

1. $f(x) = x^5 e^{x^3}$ (Indication: utiliser le changement de variable $u(x) = x^3$ puis intégration par parties).

Solution : Soit le changement de variable $u=x^3$, ça implique que $du=3x^2dx$ (en fait $du/3=x^2dx$), alors on obtient que

$$\int x^5 e^{x^3} dx = \frac{1}{3} \int u e^u du.$$

En faisant intégration par parties, on pose v=u et $w'=e^u$, donc v'=1 et $w=e^u$, puis

$$\int ue^u du = ue^u - \int e^u du = e^u (u - 1) + c.$$

Finalement, $\int x^5 e^{x^3} dx = \frac{e^{x^3}}{3} (x^3 - 1) + c$, où c est une constante réelle. Clairement le domaine de définition est $D = \mathbb{R}$.

2. $g(x) = \frac{8}{(x-1)(x+3)}$ (Indication: utiliser fractions partielles)

Solution : On écrit
$$\frac{8}{(x-1)(x+3)} = \frac{a}{x-1} + \frac{b}{x+3}$$
, alors
$$\frac{a}{x-1} + \frac{b}{x+3} = \frac{a(x+3) + b(x-1)}{(x-1)(x+3)}$$
$$= \frac{x(a+b) + (3a-b)}{(x-1)(x+3)}$$

d'où on obtient le système d'équations

$$\begin{cases} a+b=0\\ 3a-b=8 \end{cases}$$

c'est-à-dire a=2 et b=-2. Donc

$$\int \frac{8}{(x-1)(x+3)} dx = 2 \int \frac{1}{x-1} dx - 2 \int \frac{1}{x+3} dx$$
$$= 2 \ln(|x-1|) - 2 \ln(|x+3|) + c$$
$$= \ln\left(\left(\frac{x-1}{x+3}\right)^2\right) + c,$$

où c est une constante réelle. Domaine de définition $D = \mathbb{R} \setminus \{1, -3\}$.

Exercice 2

Trouver la solution générale des EDO suivantes:

1. $y' + x(\sin(x))y = 0$.

Solution : L'équation est de variables séparées (si $y(x) \neq 0$)

$$\frac{y'}{y} = -x\sin(x) \iff \int \frac{dy}{y} = -\int x\sin(x)dx$$

$$\ln(|y|) = x\cos(x) - \int \cos(x)dx$$

$$\ln(|y|) = x\cos(x) - \sin(x) + c$$

$$|y(x)| = Ke^{x\cos(x) - \sin(x)}$$

où K est une constante positive. Alors la solution générale est $y(x) = Ke^{x\cos(x) - \sin(x)}$ où maintenant K est un constante réelle.

Addendum: Noter que si on a le problème de Cauchy

$$\begin{cases} y' + x\sin(x)y = 0\\ y(x_0) = y_0, \end{cases}$$

si la condition initiale y_0 est negative, alors K es negative et si $y_0 > 0$ alors K > 0. Si la condition initial est égale à 0 alors on a une solution constante nulle.

Exercice 3

Résoudre les problèmes de Cauchy suivants

(1)
$$\begin{cases} (1+x^2)y' + y = 2\\ y(0) = 2, \end{cases}$$
 (2)
$$\begin{cases} (1+x^2)y' + y = 2\\ y(0) = 1 \end{cases}$$

Solution : L'équation (1) admet une solution constante y(x) = 2. Pour l'équation (2) on separe les variables

$$\frac{y'}{2-y} = \frac{1}{1+x^2} \Longleftrightarrow \int \frac{dy}{2-y} = \int \frac{dx}{1+x^2}$$
$$-\ln(|2-y|) = \arctan(x) + c$$

Evaluant dans x=0 on obtient que c=0. Alors $|2-y|=e^{-\arctan(x)}$, comme y(0)=1 donc 2-y(0)>0 en particulière il existe un voisinage I contenant x=0 où 2-y(x)>0 pour tout $x\in I$. Dans cet cas on obtient $y(x)=2-e^{-\arctan(x)}$.

Addendum : Les solutions sont clairement continues dans $D = \mathbb{R}$. Ci dessous, vous trouverez le champ de tangentes associé à l'équation, avec la representation graphique des solution.

Figure 1: Champ de tangentes avec la solution pour y(0) = 2.

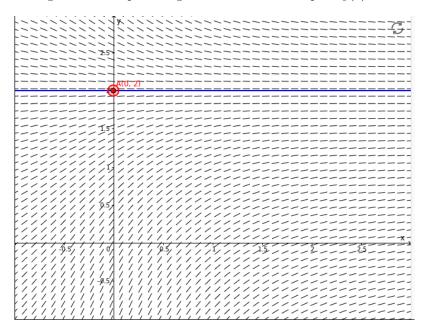


Figure 2: Champ de tangentes avec la solution pour y(0) = 1.

