Contrôle TD n° 2

Licence $1^{\rm er}$ année, Math
2C

27 mars 2024

Exercice 1

Résoudre les équations differentielles suivantes:

1.
$$y'' - y' + 6y = xe^{-x} + e^{4x}$$
;

Le polynôme associé à cette équation est $P(r)=r^2-r+6$ d'où on obtient les racines $r_1=\frac{1+i\sqrt{23}}{2}$ et $r_2=\frac{1-i\sqrt{23}}{2}$, alors la solution homogène est

$$y_h(x) = e^{x/2} \left(c_1 \cos \left(\frac{\sqrt{23}}{2} x \right) + c_2 \sin \left(\frac{\sqrt{23}}{2} x \right) \right).$$

Puis que $\alpha_1 = -1$ et $\alpha_2 = 4$ ne sont pas des racines de P(r), on a que la solution particulière est de la forme

$$y_p(x) = y_{p_1}(x) + y_{p_2}(x)$$

= $(ax + b)e^{-x} + ce^{4x}$.

Pour déterminer les constantes a, b et c on fait de qui suit :

$$y'_{p_1}(x) = -(ax+b)e^{-x} + ae^{-x}$$

$$y''_{p_1}(x) = (ax+b)e^{-x} - 2ae^{-x},$$

alors,

$$y_{p_1}''(x) - y_{p_1}'(x) + 6y_{p_1}(x) = (ax+b)e^{-x} - 2ae^{-x} + (ax+b)e^{-x} - ae^{-x} + 6(ax+b)e^{-x}$$
$$= 8(ax+b)e^{-x} - 3ae^{-x}$$
$$= (8ax+8b-3a)e^{-x} = xe^{-x}.$$

Alors 8a = 1 et 8b - 3a = 0, c'est-à-dire $y_{p_1}(x) = \left(\frac{x}{8} + \frac{3}{64}\right)e^{-x}$. Pour $y_{p_2}(x)$ on a $y'_{p_2}(x) = 4ce^{4x}$ et $y''_{p_2}(x) = 16ce^{4x}$, alors

$$y_{p_2}''(x) - y_{p_2}'(x) + 6y_{p_2}(x) = (16c - 4c + 6c)e^{4x}$$
$$= 18ce^{4x} = e^{4x}$$

Alors on obtient la solution

$$y(x) = e^{x/2} \left(c_1 \cos \left(\frac{\sqrt{23}}{2} x \right) + c_2 \sin \left(\frac{\sqrt{23}}{2} x \right) \right) + \left(\frac{x}{8} + \frac{3}{64} \right) e^{-x} + \frac{1}{18} e^{4x}.$$

2.
$$2yy' + \frac{1+y^2}{x^2} = 0;$$

Cette équation est de varibles separées, alors

$$2yy' + \frac{1+y^2}{x} = 0 \iff \frac{2yy'}{1+y^2} = -\frac{1}{x^2}$$
$$\implies \ln(1+y^2) = \frac{1}{x} + c$$
$$\iff 1+y^2 = ce^{\frac{1}{x}}$$
$$\iff y(x) = \pm \sqrt{ce^{\frac{1}{x}} - 1}.$$

1 Exercice 2

Considere l'équation differentielle $x^2y'' + 2xy' - 6y = 0$:

1. Soit $\mathcal S$ l'ensemble des solutions réelles de l'équation. Montrer que S est un espace vectoriel réel

Clarement $0 \in \mathcal{S}$. Soient $y_1, y_2 \in \mathcal{S}$ deux solutions et $\alpha, \beta \in \mathbb{R}$. On pose $y(x) := \alpha y_1(x) + \beta y_2(x)$, alors $y'(x) = \alpha y_1'(x) + \beta y_2'(x)$ et $y''(x) = \alpha y_1''(x) + \beta y_2''(x)$, si on remplace y dans l'équation

$$x^{2}y'' + 2xy' - 6y = x^{2} (\alpha y_{1}'' + \beta y_{2}'') + 2x (\alpha y_{1}' + \beta y_{2}') - 6 (\alpha y_{1} + \beta y_{2})$$

$$= \alpha \underbrace{(x^{2}y_{1}'' + 2xy_{1}' - 6y_{1})}_{=0} + \beta \underbrace{(x^{2}y_{2}'' + 2xy_{2}' - 6y_{2})}_{=0}$$

$$= 0$$

Alors $y \in \mathcal{S}$.

2. En sachant que les solutions ont la forme $x \mapsto x^n$, où $n \in \mathbb{R}$, trouver une base de \mathcal{S} . Soit $y = x^n$ une solution, alors $y'(x) = nx^{n-1}$ et $y''(x) = n(n-1)x^{n-2}$. En utilisant les expression on a

$$x^{2}y'' + 2xy' - 6y = x^{2}n(n-1)x^{n-2} + 2xnx^{n-1} - 6x^{n}$$

$$= x^{n} (n(n-1) + 2n - 6)$$

$$= x^{n} (n^{2} + n - 6)$$

$$= 0,$$

d'où on obtient que $n^2 + n - 6 = 0$ alors $n_1 = -3$ et $n_2 = 2$. Donc la solution de l'équation est

$$y(x) = \frac{c_1}{x^3} + c_2 x^2.$$

Une base pour S est $\{x^{-3}, x^2\}$.

3. Trouver la solution de $x^2y'' + 2xy' - 6y = x^3$

En sachant que las solutions de l'équation homogène associée est $y_1(x) = \frac{1}{x^3}$ et $y_2(x) = x^2$, on peut utiliser la méthode du wrosnkien. Dans sa forme canonique, la fonction q(x) est égale à x, et le wronskien est

$$W[y_1, y_2](x) = \frac{1}{x^3} \cdot 2x + \frac{3}{x^4} \cdot x^2 = \frac{5}{x^2}$$

Puis

$$u(x) = -\int^{x} \frac{y_{2}(t)q(t)}{W[y_{1}, y_{2}](t)} dt$$

$$= -\int^{x} \frac{t^{2} \cdot t \cdot t^{2}}{5} dt$$

$$= -\frac{x^{6}}{30}$$

$$v(x) = \int^{x} \frac{y_{1}(t)q(t)}{W[y_{1}, y_{2}](t)} dt$$

$$= \int^{x} \frac{t \cdot t^{2}}{5t^{3}} dt$$

$$= \int^{x} \frac{1}{5} dt = \frac{x}{5}$$

Alors la solution particulière est de la forme

$$y_p(x) = u(x)y_1(x) + v(x)y_2(x)$$
$$= -\frac{x^6}{30} \cdot \frac{1}{x^3} + \frac{x}{5} \cdot x^2 = \frac{x^3}{6}$$

et finalement,
$$y(x) = \frac{c_1}{x^7} + c_2 x^3 + \frac{x^3}{6}$$
.

Exercice 2

Résoudre le problème de Cauchy suivant:

$$\begin{cases} y'' + 2y' - 3y = 0, \\ y(0) = 1, \\ y'(0) = 2. \end{cases}$$
 (1)

Le polynôme associé à l'équation est $P(r) = r^2 + 2r - 3$, alors les racines sont $r_1 = 1$ et $r_2 = -3$, donc la solution est

$$y(x) = c_1 e^x + c_2 e^{-3x}$$

Pour déterminer les constantes c_1 et c_2 , on dérive la fonction y(x) en résultant $y'(x) = c_1 e^x - 3c_2 e^{-3x}$, alors

$$y(0) = c_1 + c_2 = 1$$

$$y'(0) = c_1 - 3c_2 = 2$$

alors
$$c_2 = -1/4$$
 et $c_1 = 5/4$, puis $y(x) = \frac{5e^{-x}}{4} - \frac{e^{3x}}{4}$