ÉTALE COHOMOLOGY

These notes are an introduction to étale cohomology. The part about Grothendieck topologies is based on [Ols16], whereas for the part concerning étale cohomology we will mainly use as references [Mil80] and [CS21].

Morphism

Throughout this document, we will mention several classes of morphisms in the category of schemes, so we will give a quick reminder of the definitions of such morphisms.

Definition 0.1 (Flat morphism). Let R be a ring and let M be a R-module. We say that M is flat if the functor

$$(-) \otimes_R M : \mathrm{Mod}_R \to \mathrm{Mod}_R$$

is exact. The module M is called faithfully flat is for every R-module A, B the induced map

$$\operatorname{Hom}_{\operatorname{Mod}_R}(A,B) \to \operatorname{Hom}_{\operatorname{Mod}_R}(A \otimes_R M, B \otimes_R M)$$

is injective.

A morphism of schemes $f: Y \to X$ is called flat if for $y \in Y$ the map $\mathcal{O}_{X,f(y)} \to \mathcal{O}_{Y,y}$ is flat. The morphism f is called faithfully flat if f is flat and surjective.

Definition 0.2 (Unramified morphism). Let A and B two Noetherian local rings. A homomorphism of local rings $f: A \to B$ is called unramified if

- (1) $\mathfrak{m}_A B = \mathfrak{m}_B$.
- (2) $\kappa(\mathfrak{m}_R)$ is a separable finite extension of $\kappa(\mathfrak{m}_A)$.
- (3) B is essentially of finite type over A

Definition 0.3 (Smooth morphism). A morphism $f: Y \to X$ is called smooth if it is flat, locally of finite presentation and for every geometric point $\bar{x} \to X$ type fiber $Y_{\bar{x}}$ is regular.

Definition 0.4 (Étale morphism). A morphism $f: Y \to X$ is called étale if it is an unramified and flat morphism or equivalently if it is unramified and smooth.

Definition 0.5 (Nisnevich morphism). A morphism $f: Y \to X$ is called Nisnevich if it is an étale morphism such that for every point $x \in X$, there exists a point $y \in Y$ in the fiber $f^{-1}(x)$ such that the induced map of residue fields $k(x) \to k(y)$ is an isomorphism.

Recall that when we there are three abelian categories \mathcal{A} , \mathcal{B} and \mathcal{C} , such that the first two have enough injectives, and left exact functors $F: \mathcal{A} \to \mathcal{B}$ and $G: \mathcal{B} \to \mathcal{C}$.

Definition 0.6. Let $G: \mathcal{B} \to \mathcal{C}$ be a left exact functor. An object B of B is called G-acyclic if the derived functors of G vanish on B, i.e. $R^iF(B)=0$ for $i\neq 0$.

Assume that F sends injective objects of \mathcal{A} to G-acyclic objects of \mathcal{B} , then there exists a convergent first quadrant cohomological spectral sequence (Grothendieck spectral sequence [Wei94, Theorem 5.8.3]) for each $A \in \mathcal{A}$:

$$E_2^{p,q} = (R^p F)(R^q G)(A) \Longrightarrow R^{p+q}(FG)(A).$$

1. Grothendieck topologies

A Grothendieck topology, is the natural generalization of a topology in a topological space, but now if we consider a category \mathcal{C} as a "space" and morphisms as "open subsets". In order to make this analogue, let us recall the following construction: consider a topological space X and let $\mathrm{Op}(X)$ be the collection of open subsets. This condition can be endowed with arrows between its objects: for two open subsets $U, V \in \mathrm{Op}(X)$ we set

$$\operatorname{Hom}_{\operatorname{Op}(X)}\left(U,V\right) = \begin{cases} \{*\} \text{ if } U \subset V \\ \emptyset \text{ if not.} \end{cases}$$

Here, a presheaf P with values in a category V, of a topological space X can be characterized as a contravariant functor

$$P: \operatorname{Op}(X)^{op} \to V.$$

In general V can be taken as the category of sets Set, abelian groups Ab, R-modules $R-\operatorname{Mod}$, etc. A presheaf P is a sheaf if and only if for every $U\in\operatorname{Op}(X)$ and covering $U=\bigcup_{i\in I}U_i$ the sequence

$$F(U) \to \prod_{i \in I} F(U_i) \Longrightarrow \prod_{i,j} F(U_i \cap U_j)$$

is an equalizer diagram.

Definition 1.1. Let \mathcal{C} be a category. A Grothendieck topology¹ on the category \mathcal{C} consists in the following data: for every object $X \in \mathrm{Ob}(\mathcal{C})$ and a set $\mathrm{Cov}(X)$ of collections of morphisms $\{X_i \to X\}_{i \in I}$ such that the following properties hold:

- (1) If $V \to X$ is an isomorphism in \mathcal{C} , then $\{V \to X\} \in \text{Cov}(X)$.
- (2) If $\{X_i \to X\}_{i \in I} \in \text{Cov}(X)$ and $Y \to X$ is an arrow in C, then the fiber products $X_i \times_X Y$ exist in C and $\{X_i \times_X Y \to Y\}_{i \in I} \in \text{Cov}(X)$.
- (3) If $\{X_i \to X\}_{i \in I} \in \text{Cov}(X)$, and if for every $i \in I$ we are given $\{V_{ij} \to X_i\}_{j \in J_i} \in \text{Cov}(X_i)$, then the collection of composition $\{V_{ij} \to X_i \to X\}_{j \in J_i, i \in I}$ is in Cov(X).

If \mathcal{C} has an associated Grothendieck we say that \mathcal{C} is a site.

Definition 1.2. A family of morphism $\{U_i \to U\}_{i \in I}$ in a category \mathcal{C} is called *epimorphism* if

$$\operatorname{Hom}_{\mathcal{C}}(U,Z) \to \prod_{i \in I} \operatorname{Hom}_{\mathcal{C}}(U_i,Z)$$

is injective for any object $Z \in \mathcal{C}$. It is called effective epimorphism if

$$\operatorname{Hom}_{\mathcal{C}}(U,Z) \to \prod_{i \in I} \operatorname{Hom}_{\mathcal{C}}(U_i,Z) \to \prod_{i,j \in I} \operatorname{Hom}_{\mathcal{C}}(U_i \times_U U_j,Z)$$

is an equalizer diagram for any object $Z \in \mathcal{C}$. The family of morphism $\{U_i \to U\}_{i \in I}$ it is called universal effective epimorphism if $\{U_i \times_U V \to V\}$ is effective epimorphism for any $V \to U$.

The previous definition of canonical topology is equivalent to the one given by the finest topology in \mathcal{C} such that every respresentable presheaf, i.e. a presheaf F such that there exists an object $X \in \text{ob}(\mathcal{C})$ with a natural isomorphism $F \simeq \text{Hom}_{\mathcal{C}}(-,X)$, is in fact a sheaf.

¹Or a pretopology in the most classical sense.

- **Example 1.3.** (1) For a category \mathcal{C} , define a topology on \mathcal{C} as follows: for any object $X \in \mathcal{C}$, $\{X_i \to X\}_{i \in I}$ is a covering of X if it is universal effective morphism. This defines a topology on \mathcal{C} , called canonical topology on \mathcal{C} .
 - (2) (Small classical topology) If X is a topological space, then we can associated a category and a Grothendieck topology to it. If X is a scheme, then the Zariski topology on it defines a Grothendieck topology, called the "small Zariski site". For a scheme, we denote the small Zariski site as X_{zar} .
 - (3) (Big Zariski site) Let X be a scheme and let $\mathcal{C} = \operatorname{Sch}/X$ be the category of schemes over X. For $U \to X$ we define $\operatorname{Cov}(U)$ to be the collections of X-morphisms $\{U_i \to U\}_{i \in I}$ with $U_i \to U$ open embeddings and $\bigcup_{i \in I} U_i = U$.
 - (4) (Small étale site) Let X be a scheme. Define $X_{\text{\'et}}$ to be the full subcategory of the category of X-schemes whose objects are $f: U \to X$ with f étale. A collection of morphisms $\{U_i \to U\}_{i \in I} \in \text{Cov}(U)$ if each $U_i \to U$ is étale and the map

$$\coprod_{i\in I} U_i \to U$$

is surjective.

- (5) (Big étale site) Let X be a scheme and let $\mathcal{C} = \operatorname{Sch}/X$ be the category of schemes over X. For $U \to X$ we define $\operatorname{Cov}(U)$ to be the collections of X-morphisms $\{U_i \to U\}_{i \in I}$ with $U_i \to U$ étale morphism and $\coprod_{i \in I} U_i \to U$ is surjective.
- (6) (fppf site) Let X be a scheme and let $C = \operatorname{Sch}/X$ be the category of schemes over X. For $U \to X$ we define $\operatorname{Cov}(U)$ to be the collections of X-morphisms $\{U_i \to U\}_{i \in I}$ with $U_i \to U$ flat and locally of finite type morphisms, and the morphism $\coprod_{i \in I} U_i \to U$ is surjective.
- (7) (Smooth site) Let X be a scheme. Define \mathcal{C} to be the full subcategory of the category of X-schemes whose objects are $f: U \to X$ with f smooth. A collection of morphisms $\{U_i \to U\}_{i \in I} \in \text{Cov}(U)$ if each $U_i \to U$ is smooth and the map

$$\coprod_{i \in I} U_i \to U$$

is surjective.

- (8) (Small Nisnevich site) Let X be a scheme. Define X_{Nis} to be the full subcategory of the category of X-schemes whose objects are $f: U \to X$ with f a Nisnevich morphism. A collection of morphisms $\{U_i \to U\}_{i \in I} \in \text{Cov}(U)$ if each $U_i \to U$ is Nisnevich and the map $\coprod_{i \in I} U_i \to U$ is surjective.
- (9) (h-topology) Let X be a scheme. The h-site of the category of X-scheme of finite presentation is generated by the fppf-coverings $\{U_i \to U\}_{i \in I}$ and diagrams of the form $\{U' \to U, Z \to U\}$ where
 - $U' \to U$ is a proper morphism of finite presentation,
 - $Z \to U$ is a closed immersion of finite presentation, and
 - $U' \to U$ is an isomorphism in $U \setminus Z$.

If a diagram $\{U' \to U, Z \to U\}$ fulfils the previous conditions it is called an abstract blow-up.

(10) (fpqc topology) Let U be a scheme. A fpqc (fidèlement plat quasi-compact) covering of U is a family $\{U_i \to U\}_{i \in I}$ such that for each $U_i \to U$ is a flat morphism and for each affine open $V \subset U$ there exists a finite set $\{i_1, \ldots, i_m\} \subset I$, affine opens $V_{i_k} \subset U_{i_k}$ such that $\coprod_k V_{i_k} \to U$ is surjective. If we take X a scheme, by considering the Grothendieck topology given by the fpqc coverings in Sch/X we obtain the fpqc site of X, denoted by X_{fpqc} .

Remark 1.4. The difference between a small and big site is that in the small site we consider objects in Sch/X whose structural morphisms $U \to X$ are in the class of morphism considered (Zariski, étale or Nisnevich), while in the big site this is note required.

A morphism between sites \mathcal{C} and \mathcal{C}' is a continuous functor, c'est-à-dire, if for every $X \in \mathcal{C}$ and $\{X_i \to X\}_{i \in I} \in \text{Cov}(X)$, then $\{f(X_i) \to f(X)\}_{i \in I} \in \text{Cov}(f(X))$, and if f commutes with fiber products when they exist in \mathcal{C}' .

Example 1.5. (1) For a scheme X, the identity morphism on X defines morphisms of sites

$$X_{\mathrm{fpqc}} \to X_{\mathrm{fppf}} \to X_{\mathrm{\acute{E}t}} \to X_{\mathrm{\acute{e}t}} \to X_{\mathrm{Nis}} \to X_{\mathrm{zar}}$$

(2) Let k be a field and let K/k any field extension, and let X be a k-scheme, then the morphism $X_K \to X$ defines a morphism of sites.

Definition 1.6. Let \mathcal{C} be a category. A presheaf on \mathcal{C} with values in V is a contravariant functor

$$F: \mathcal{C}^{op} \to V.$$

In addition, if \mathcal{C} is endowed with a Grothendieck topology, then

- (1) a presheaf is called separated if for every $U \in \mathcal{C}$ and covering $\{U_i \to U\}_{i \in I} \in \text{Cov}(U)$ the map $F(U) \to \prod_{i \in I} F(U_i)$ is injective.
- (2) a presheaf is called a **sheaf** if for every $U \in \mathcal{C}$ and covering $\{U_i \to U\}_{i \in I} \in \text{Cov}(U)$ the diagram

$$F(U) \to \prod_{i \in I} F(U_i) \Longrightarrow \prod_{i,j \in I} F(U_i \times_U U_j)$$

is an equalizer diagram. Here the two maps are induced by the projections $U_i \to U_i \times_U U_j$ and $U_j \to U_i \times_U U_j$.

Theorem 1.7. Let C be a site, then the inclusion functor

$$\{Sheaves \ on \ \mathcal{C}\} \hookrightarrow \{Presheaves \ on \ \mathcal{C}\}$$

has a left adjoint $F \mapsto F^s$, which is called the sheafification functor.

Definition 1.8. A category T equivalent to the category of sheaves on a site is called a topos.

Considering x the topos of sheaves of the space of one-point. A point in of a topos T is a mopphisms of topoi $f: x \to T$. We say that T has enough points if there exists a set of points $\{f_i: x_i \to T\}_{i \in I}$ of T such that the induced functor

$$T \to \operatorname{Set}^I$$

 $F \mapsto \{f_i^* F\}_{i \in I}$

if faithful.

Theorem 1.9. [Ols16, Theorem 2.3.2] Let T be a topos and let R be a ring. Denote by R-Mod $_T$ the category of R-modules of T, then R-Mod $_T$ is an abelian category with enough injectives.

Proof. Consider a topos T that has enough points. Since T has enough points, there exists a collection of morphisms $\{f_i: x_i \to T\}_{i \in I}$ of T (which we fix for the rest of the proof) such that the induced functor

$$T \to \operatorname{Set}^I$$

 $F \mapsto \{f_i^* F\}_{i \in I}$

if faithful. For $F \in R\text{-Mod}_T$ and $i \in I$ we fix $F_i := f_i^*F \in x_i$. The sheaf F_i is a R_i -module with R_i a ring. Choosing for each $i \in I$ and injective R_i -module I_i and an inclusion $F_i \hookrightarrow I_i$. The adjunction morphism induced by $(f_i)_*$ and f_i^* defines a morphism $p_i : F \to (f_i)_* f_i^* F \hookrightarrow (f_i)_* I_i$, taking the product over I we get a map

$$p: F \to \prod_{i \in I} (f_i)_* F \to \prod_{i \in I} (f_i)_* I_i.$$

The sheaf $\prod_{i\in I} (f_i)_* I_i$ is injective because $(f_i)_*$ has an exact left adjoint, preserves injectives and the product of injective is injective. The map p is an injection because $F_i \to I_i$ is an injection.

We have a functor $\Gamma(T, -): R\text{-Mod}_T \to \text{Ab}$ where Ab is the category of abelian groups obtained by $\text{Hom}_{R\text{-Mod}_T}(R, F)$. The cohomology groups of the site T with values in abelian groups $H^i(T, -): R\text{-Mod}_T \to \text{Ab}$ are given by the i-th right derived functor of $\Gamma(T, -)$, which is left exact.

2. ÉTALE SHEAVES AND COHOMOLOGY

We can define the local ring for the étale cohomology. We recall that for a point $x \to X$ the local ring of X at x is denoted by $\mathcal{O}_{X,x}$ and is obtained by a limit

$$\mathcal{O}_{X,x} = \varinjlim_{U \subset X} \mathcal{O}(U)$$

which is taken over all open subset $U \subset X$ containing x. The étale local ring of X in a point x is obtained as

$$\mathcal{O}_{X,x}^h = \varinjlim_{U \subset X} \mathcal{O}(U)$$

where the limit runs over all diagrams

$$\bar{x} \xrightarrow{V} \psi$$
 tale $\bar{x} \xrightarrow{X} X$

This is called the hensenialization of the local ring $\mathcal{O}_{X,x}$. The residue field of this local ring is k(x). The étale neighbourhood of a geometric point $\bar{x} \to X$ is an étale X-scheme U with a lifting point $u \to \bar{x}$.

Now let x be a point in X. One says that a geometric point \bar{x} lies over x if the point x is the image of \bar{x} i X (strictly saying that $k(x) \subset k(\bar{x})$). Define

$$\mathcal{O}_{X,x}^{\mathrm{sh}} = \varinjlim_{(U,\overline{x})} \mathcal{O}(U).$$

Where the limit runs over all étale neighbourhood of geometric points \bar{x} which are over x. This is the strict henselianization of the local ring $\mathcal{O}_{X,x}$. The residue field of $\mathcal{O}_{X,x}^{\mathrm{sh}}$ is the separable closure of k(x) in $k(\bar{x})$. The stalk of a presheaf \mathcal{F} at a geometric point $\bar{x} \to X$ is defined as

$$\mathcal{F}_{\bar{x}} = \varinjlim \mathcal{F}(U)$$

where the limit is taken over all connected étale open $U \to X$ which lifts to \bar{x} .

With the notion of stalk, as in the classical case, we can obtain the following equivalent statements:

Proposition 2.1. [Mil80] Let \mathcal{F} , \mathcal{F}' and \mathcal{F}'' be étale sheaves over X, then the following are equivalents

(1) the sequence

$$0 \to \mathcal{F}' \to \mathcal{F} \to \mathcal{F}'' \to 0$$

is exact in the category of étale sheaves over X.

(2) the sequence of abelian groups

$$0 \to \mathcal{F}'_{\bar{x}} \to \mathcal{F}_{\bar{x}} \to \mathcal{F}''_{\bar{x}} \to 0$$

is a short exact sequence for each geometric point $\bar{x} \to X$.

Remark 2.2. There is a direct link between étale cohomology and Galois cohomology. Let k be a field and $\operatorname{Spec}(k)_{\text{\'et}}$ be the small étale site if k. The small category consists of finite dimensional étale k-algebras, i.e. finite products of finite separable field field extensions of k. A presheaf $\mathcal P$ on $\operatorname{Spec}(k)$ is a sheaf if for every disjoint union sends $\coprod_i \operatorname{Spec}(k_i)$ to a direct product of abalian groups and $\mathcal P(k') = \mathcal P(k'')^{\operatorname{Gal}(k''/k')}$ with $k \subset k' \subset k''$ finite Galois extensions. Choosing a separable closure k^s of k, and let $G_k = \operatorname{Gal}(k^s/k)$. For a sheaf $\mathcal F$ we associate a discrete G_k -module as follows

$$M_{\mathcal{F}} := \varinjlim_{k \subset k' \subset k^s} \mathcal{F}(k')$$

where k' runs over all finite separable extension of k. On the other hand, if M is a discrete G_k -module we can associate a sheaf over $\operatorname{Spec}(k)_{\text{\'et}}$ in the following way

$$\mathcal{F}_M(A) := \operatorname{Hom}_{G_k\operatorname{-Mod}}(F(A), M)$$

with $F(A) = \operatorname{Hom}_{k-\operatorname{alg}}(A, k^s)$ and A is finite dimensional k-algebra. This correspondence defines an equivalence of categories between the étale sheaves over k and the discrete G_k -modules.

Since for an étale sheaf \mathcal{F} , we have $M_{\mathcal{F}}^{G_k} = \Gamma(k, \mathcal{F})$ then the étale cohomology groups $H^i_{\text{\'et}}(k, \mathcal{F})$ are isomorphism to the group cohomology $H^i(G_k, M_{\mathcal{F}})$. Similarly the Extgroups $\operatorname{Ext}(\mathcal{F}, \mathcal{F}')$ in the category of étale sheaves over k are isomorphic to the Ext-groups $\operatorname{Ext}(M_{\mathcal{F}}, M_{\mathcal{F}}')$ in the category of discrete G_k -modules.

Example 2.3. Consider the following étale sheaves over X:

- (1) $\mathbb{G}_{a,X}$ is the sheaf associated to the presheaf given by $\mathbb{G}_{a,X}(Y) = \Gamma(Y,\mathcal{O}_Y)$.
- (2) $\mathbb{G}_{m,X}$ is the sheaf associated to the presheaf given by $\mathbb{G}_{m,X}(Y) = \Gamma(Y,\mathcal{O}_Y^*)$.
- (3) $\mu_{n,X}$ for n > 0 is the sheaf associated to the presheaf given by $\mu_{n,X}(Y) = \{x \in \Gamma(Y, \mathcal{O}_Y^*) \mid x^n = 1\}.$

Suppose that we have continuous morphisms of sites $X'' \xrightarrow{\pi'} X' \xrightarrow{\pi} X$ and \mathcal{A} , \mathcal{B} and \mathcal{C} are the categories of sheaves on X'', X', X respectively. The functor π^* is exact and has a right adjoint π_* , thus it sends injectives to injectives (in particular an injective object in \mathcal{B} is G-acyclic) and hence, for every sheaf \mathcal{F} on X'' we have a spectral sequence (given by the Grothendieck spectral sequence) called the Leray spectral sequence

$$E_2^{p,q} = (R^p \pi_*)(R^q \pi'_*) \mathcal{F} \Longrightarrow R^{p+q}(\pi \pi')_* \mathcal{F}$$

Some examples of étale cohomology groups:

Example 2.4. (1) The Picard group Pic(X) of a scheme X is the groups of invertible coherent sheaves of \mathcal{O}_X -modules, considered up to isomorphism. By this definition we have that

$$\operatorname{Pic}(X) = H^1_{\operatorname{zar}}(X, \mathcal{O}_X^*) = H^1_{\operatorname{zar}}(X, \mathbb{G}_{m,X})$$

By Hilbert's Theorem 90, see [Mil80, Prop. III.4.9], the canonical maps induced by the change of topology

$$H^1_{\operatorname{zar}}(X,\mathbb{G}_{m,X}) \to H^1_{\operatorname{\acute{e}t}}(X,\mathbb{G}_{m,X}) \to H^1_{\operatorname{fppf}}(X,\mathbb{G}_{m,X})$$

are isomorphisms.

(2) The Grothendieck-Brauer group or cohomological Brauer group of a scheme X is defined to be $H^2_{\text{\'et}}(X, \mathbb{G}_{m,X})$

3. Descent theory

Descent theory has the following motivation: Consider a scheme X and a open covering $\mathcal{U}=\{U_i\}_{i\in I}$. Consider the following category $\{(F_i)_{i\in I},(\sigma_{i,j})_{i,j\in I}\}$ where F_i is a coherent sheaf in U_i and for every $i,j\in I$ there is an isomorphism $\sigma_{i,j}:F_i\Big|_{U_i\cap U_j}\to F_j\Big|_{U_i\cap U_j}$ such that $\sigma_{i,i}=\mathrm{id}_{F_i}$ and for every $i,j,k\in I$ we have a commutative diagram

$$F_i\Big|_{U_{ijk}} \xrightarrow{\sigma_{i,j}|_{U_{ijk}}} F_j\Big|_{U_{ijk}} \xrightarrow{\sigma_{j,k}|_{U_{ijk}}} F_k\Big|_{U_{ijk}}$$

where $U_{ijk} = U_i \cap U_j \cap U_k$. The gluing property asserts that this category is equivalent to the category of quasi-coherent sheaves over X.

To begin with descent theory we mention the following result: consider X and Y schemes and $Y \to X$ a morphism of schemes. Consider the functor

$$\underline{Y} : (\operatorname{Sch}/X)^{\operatorname{op}} \to \operatorname{Sets}$$

 $(U \to X) \mapsto Y(U) := \operatorname{Hom}_{\operatorname{Sch}/X}(U, Y).$

This functor is clearly a presheaf over the category Sch/X, but also a fpqc sheaf for the category Sch/X.

Theorem 3.1. For any morphism of schemes $Y \to X$, the functor \underline{Y} defines a sheaf in the fpqc topology (and therefore is also an étale, fppf, Nisnevich, Zariski,... sheaf) on the category $(Sch/X)^{op}$.

The proof of the previous theorem uses the following criterion to get a sheaf in the fpqc topology:

Lemma 3.2. Let X be a scheme and $F: (\operatorname{Sch}/X)^{\operatorname{op}} \to \operatorname{Sets}$ be a presheaf. Suppose that F satisfies the following two conditions:

- (1) F is a sheaf in the big Zariski site of X.
- (2) Whenever $V \to U$ is faithfully flat of affine X-schemes the following sequence is exact

$$F(U) \to F(V) \Longrightarrow F(V \times_U V).$$

Then F is a sheaf in fpqc topology.

Consider a category \mathcal{C} with finite fiber products and let $p: \mathcal{F} \to \mathcal{C}$ be a fibered category over \mathcal{C} . For a morphism $f: X \to Y \in \mathcal{C}$, we choose a pull-back functor $f^*: \mathcal{F}(Y) \to \mathcal{F}(X)$, and for any morphism we define the category $\mathcal{F}(X \xrightarrow{f} Y)$ as follows: an element here

is a pair (E, σ) with E an object in $\mathcal{F}(X)$ and $\sigma : \operatorname{pr}_1^*E \to \operatorname{pr}_2^*E$ is an isomorphism in $\mathcal{F}(X \times_Y X)$ such that the following is a commutative diagram

and a mopphism in $\mathcal{F}(X \xrightarrow{f} Y)$ between two objects $(F, \eta) \to (E, \sigma)$ is a morphism $g: E \to F$ in $\mathcal{F}(X)$ such that

$$\operatorname{pr}_{1}^{*}F \xrightarrow{\operatorname{pr}_{1}^{*}g} \operatorname{pr}_{1}^{*}E$$

$$\downarrow^{\eta} \qquad \qquad \downarrow^{\sigma}$$

$$\operatorname{pr}_{2}^{*}F \xrightarrow{\operatorname{pr}_{2}^{*}g} \operatorname{pr}_{2}^{*}E$$

is a commutative diagram. For $(E, \sigma) \in \mathcal{F}(X \xrightarrow{f} Y)$ the isomorphism σ is called descent data for the object E.

BIBLIOGRAPHY

- [CS21] Jean-Louis Colliot-Thélène and Alexei N Skorobogatov. *The Brauer-Grothendieck group*. Vol. 71. Springer, 2021.
- [Mil80] James S Milne. Etale cohomology (PMS-33). Princeton university press, 1980.
- [Ols16] Martin Olsson. Algebraic spaces and stacks. Vol. 62. American Mathematical Soc., 2016.
- [Wei94] Charles A. Weibel. An introduction to homological algebra. Vol. 38. Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1994, pp. xiv+450.