
ÉTALE COHOMOLOGY

These notes are an introduction to étale cohomology. The part about Grothendieck
topologies is based on [Ols16], whereas for the part concerning étale cohomology we will
mainly use as references [Mil80] and [CS21].

Morphism

Throughout this document, we will mention several classes of morphisms in the category
of schemes, so we will give a quick reminder of the definitions of such morphisms.

Definition 0.1 (Flat morphism). Let R be a ring and let M be a R-module. We say that
M is flat if the functor

(−)⊗R M : ModR → ModR

is exact. The module M is called faithfully flat is for every R-module A, B the induced
map

HomModR(A,B) → HomModR(A⊗R M,B ⊗R M)

is injective.
A morphism of schemes f : Y → X is called flat if for y ∈ Y the map OX,f(y) → OY,y is

flat. The morphism f is called faithfully flat if f is flat and surjective.

Definition 0.2 (Unramified morphism). Let A and B two Noetherian local rings. A
homomorphism of local rings f : A → B is called unramified if

(1) mAB = mB.
(2) κ(mB) is a separable finite extension of κ(mA).
(3) B is essentially of finite type over A

Definition 0.3 (Smooth morphism). A morphism f : Y → X is called smooth if it is flat,
locally of finite presentation and for every geometric point x̄ → X tyhe fiber Yx̄ is regular.

Definition 0.4 (Étale morphism). A morphism f : Y → X is called étale if it is an
unramified and flat morphism or equivalently if it is unramified and smooth.

Definition 0.5 (Nisnevich morphism). A morphism f : Y → X is called Nisnevich if it is
an étale morphism such that for every point x ∈ X, there exists a point y ∈ Y in the fiber
f−1(x) such that the induced map of residue fields k(x) → k(y) is an isomorphism.

Recall that when we there are three abelian categories A, B and C, such that the first
two have enough injectives, and left exact functors F : A → B and G : B → C.

Definition 0.6. Let G : B → C be a left exact functor. An object B of B is called G-acyclic
if the derived functors of G vanish on B, i.e. RiF (B) = 0 for i ̸= 0.

Assume that F sends injective objects of A to G-acyclic objects of B, then there exists a
convergent first quadrant cohomological spectral sequence (Grothendieck spectral sequence
[Wei94, Theorem 5.8.3]) for each A ∈ A:

Ep,q
2 = (RpF )(RqG)(A) =⇒ Rp+q(FG)(A).
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1. Grothendieck topologies

A Grothendieck topology, is the natural generalization of a topology in a topological
space, but now if we consider a category C as a “space” and morphisms as “open subsets”.
In order to make this analogue, let us recall the following construction: consider a topo-
logical space X and let Op(X) be the collection of open subsets. This condition can be
endowed with arrows between its objects: for two open subsets U, V ∈ Op(X) we set

HomOp(X) (U, V ) =

{
{∗} if U ⊂ V

∅ if not.

Here, a presheaf P with values in a category V , of a topological space X can be charac-
terized as a contravariant functor

P : Op(X)op → V.

In general V can be taken as the category of sets Set, abelian groups Ab, R-modules
R − Mod, etc. A presheaf P is a sheaf if and only if for every U ∈ Op(X) and covering

U =
⋃
i∈I

Ui the sequence

F (U) →
∏
i∈I

F (Ui) ⇒
∏
i,j

F (Ui ∩ Uj)

is an equalizer diagram.

Definition 1.1. Let C be a category. A Grothendieck topology1 on the category C consists
in the following data: for every object X ∈ Ob(C) and a set Cov(X) of collections of
morphisms {Xi → X}i∈I such that the following properties hold:

(1) If V → X is an isomorphism in C, then {V → X} ∈ Cov(X).
(2) If {Xi → X}i∈I ∈ Cov(X) and Y → X is an arrow in C, then the fiber products

Xi ×X Y exist in C and {Xi ×X Y → Y }i∈I ∈ Cov(X).
(3) If {Xi → X}i∈I ∈ Cov(X), and if for every i ∈ I we are given {Vij → Xi}j∈Ji ∈

Cov(Xi), then the collection of composition {Vij → Xi → X}j∈Ji,i∈I is in Cov(X).

If C has an associated Grothendieck we say that C is a site.

Definition 1.2. A family of morphism {Ui → U}i∈I in a category C is called epimorphism
if

HomC(U,Z) →
∏
i∈I

HomC(Ui, Z)

is injective for any object Z ∈ C. It is called effective epimorphism if

HomC(U,Z) →
∏
i∈I

HomC(Ui, Z) →
∏
i,j∈I

HomC(Ui ×U Uj , Z)

is an equalizer diagram for any object Z ∈ C. The family of morphism {Ui → U}i∈I it is
called universal effective epimorphism if {Ui ×U V → V } is effective epimorphism for any
V → U .

The previous definition of canonical topology is equivalent to the one given by the finest
topology in C such that every respresentable presheaf, i.e. a presheaf F such that there
exists an object X ∈ ob(C) with a natural isomorphism F ≃ HomC(−, X), is in fact a
sheaf.

1Or a pretopology in the most classical sense.
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Example 1.3. (1) For a category C, define a topology on C as follows: for any object
X ∈ C, {Xi → X}i∈I is a covering of X if it is universal effective morphism. This
defines a topology on C, called canonical topology on C.

(2) (Small classical topology) If X is a topological space, then we can associated a
category and a Grothendieck topology to it. If X is a scheme, then the Zariski
topology on it defines a Grothendieck topology, called the “small Zariski site”. For
a scheme, we denote the small Zariski site as Xzar.

(3) (Big Zariski site) Let X be a scheme and let C = Sch/X be the category of schemes
over X. For U → X we define Cov(U) to be the collections of X-morphisms
{Ui → U}i∈I with Ui → U open embeddings and

⋃
i∈I Ui = U .

(4) (Small étale site) Let X be a scheme. Define Xét to be the full subcategory of the
category of X-schemes whose objects are f : U → X with f étale. A collection of
morphisms {Ui → U}i∈I ∈ Cov(U) if each Ui → U is étale and the map∐

i∈I
Ui → U

is surjective.
(5) (Big étale site) Let X be a scheme and let C = Sch/X be the category of schemes

over X. For U → X we define Cov(U) to be the collections of X-morphisms
{Ui → U}i∈I with Ui → U étale morphism and

∐
i∈I Ui → U is surjective.

(6) (fppf site) Let X be a scheme and let C = Sch/X be the category of schemes
over X. For U → X we define Cov(U) to be the collections of X-morphisms
{Ui → U}i∈I with Ui → U flat and locally of finite type morphisms, and the
morphism

∐
i∈I Ui → U is surjective.

(7) (Smooth site) Let X be a scheme. Define C to be the full subcategory of the
category of X-schemes whose objects are f : U → X with f smooth. A collection
of morphisms {Ui → U}i∈I ∈ Cov(U) if each Ui → U is smooth and the map∐

i∈I
Ui → U

is surjective.
(8) (Small Nisnevich site) Let X be a scheme. Define XNis to be the full subcategory

of the category of X-schemes whose objects are f : U → X with f a Nisnevich
morphism. A collection of morphisms {Ui → U}i∈I ∈ Cov(U) if each Ui → U is
Nisnevich and the map

∐
i∈I Ui → U is surjective.

(9) (h-topology) Let X be a scheme. The h-site of the category of X-scheme of finite
presentation is generated by the fppf-coverings {Ui → U}i∈I and diagramns of the
form {U ′ → U,Z → U} where

• U ′ → U is a proper morphism of finite presentation,
• Z → U is a closed immersion of finite presentation, and
• U ′ → U is an isomorphism in U \ Z.

If a diagram {U ′ → U,Z → U} fulfils the previous conditions it is called an abstract
blow-up.

(10) (fpqc topology) Let U be a scheme. A fpqc (fidèlement plat quasi-compact) covering
of U is a family {Ui → U}i∈I such that for each Ui → U is a flat morphism and
for each affine open V ⊂ U there exists a finite set {i1, . . . , im} ⊂ I, affine opens
Vik ⊂ Uik such that

∐
k Vik → U is surjective. If we takeX a scheme, by considering

the Grothendieck topology given by the fpqc coverings in Sch/X we obtain the fpqc
site of X, denoted by Xfpqc.
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Remark 1.4. The difference between a small and big site is that in the small site we
consider objects in Sch/X whose structural morphisms U → X are in the class of morphism
considered (Zariski, étale or Nisnevich), while in the big site this is note required.

A morphism between sites C and C′ is a continuous functor, c’est-à-dire, if for every
X ∈ C and {Xi → X}i∈I ∈ Cov(X), then {f(Xi) → f(X)}i∈I ∈ Cov(f(X)), and if f
commutes with fiber products when they exist in C′.

Example 1.5. (1) For a scheme X, the identity morphism on X defines morphisms
of sites

Xfpqc → Xfppf → XÉt → Xét → XNis → Xzar

(2) Let k be a field and let K/k any field extension, and let X be a k-scheme, then the
morphism XK → X defines a morphism of sites.

Definition 1.6. Let C be a category. A presheaf on C with values in V is a contravariant
functor

F : Cop → V.

In addition, if C is endowed with a Grothendieck topology, then

(1) a presheaf is called separated if for every U ∈ C and covering {Ui → U}i∈I ∈ Cov(U)
the map F (U) →

∏
i∈I F (Ui) is injective.

(2) a presheaf is called a sheaf if for every U ∈ C and covering {Ui → U}i∈I ∈ Cov(U)
the diagram

F (U) →
∏
i∈I

F (Ui) ⇒
∏
i,j∈I

F (Ui ×U Uj)

is an equalizer diagram. Here the two maps are induced by the projections Ui →
Ui ×U Uj and Uj → Ui ×U Uj .

Theorem 1.7. Let C be a site, then the inclusion functor

{Sheaves on C} ↪→ {Presheaves on C}
has a left adjoint F 7→ F s, which is called the sheafification functor.

Definition 1.8. A category T equivalent to the category of sheaves on a site is called a
topos.

Considering x the topos of sheaves of the space of one-point. A point in of a topos T is
a moprhisms of topoi f : x → T . We say that T has enough points if there exists a set of
points {fi : xi → T}i∈I of T such that the induced functor

T → SetI

F 7→ {f∗
i F}i∈I

if faithful.

Theorem 1.9. [Ols16, Theorem 2.3.2] Let T be a topos and let R be a ring. Denote by
R-ModT the category of R-modules of T , then R-ModT is an abelian category with enough
injectives.

Proof. Consider a topos T that has enough points. Since T has enough points, there exists
a collection of morphisms {fi : xi → T}i∈I of T (which we fix for the rest of the proof)
such that the induced functor

T → SetI

F 7→ {f∗
i F}i∈I



ÉTALE COHOMOLOGY 5

if faithful. For F ∈ R-ModT and i ∈ I we fix Fi := f∗
i F ∈ xi. The sheaf Fi is a

Ri-module with Ri a ring. Choosing for each i ∈ I and injective Ri-module Ii and an
inclusion Fi ↪→ Ii. The adjunction morphism induced by (fi)∗ and f∗

i defines a morphism
pi : F → (fi)∗f

∗
i F ↪→ (fi)∗Ii, taking the product over I we get a map

p : F →
∏
i∈I

(fi)∗F →
∏
i∈I

(fi)∗Ii.

The sheaf
∏

i∈I(fi)∗Ii is injective because (fi)∗ has an exact left adjoint, preserves injectives
and the product of injective is injective. The map p is an injection because Fi → Ii is an
injection. □

We have a functor Γ(T,−) : R-ModT → Ab where Ab is the category of abelian groups
obtained by HomR-ModT (R,F ). The cohomology groups of the site T with values in abelian
groyps H i(T,−) : R-ModT → Ab are given by the i-th right derived functor of Γ(T,−),
which is left exact.

2. Étale sheaves and cohomology

We can define the local ring for the étale cohomology. We recall that for a point x → X
the local ring of X at x is denoted by OX,x and is obtained by a limit

OX,x = lim−→
U⊂X

O(U)

which is taken over all open subset U ⊂ X containing x. The étale local ring of X in a
point x is obtained as

Oh
X,x = lim−→

U⊂X

O(U)

where the limit runs over all diagrams

U

x̄ X

étale

This is called the hensenialization of the local ring OX,x. The residue field of this local
ring is k(x). The étale neighbourhood of a geometric point x̄ → X is an étale X−scheme
U with a lifting point u → x̄.

Now let x be a point in X. One says that a geometric point x̄ lies over x if the point x
is the image of x̄ i X (strictly saying that k(x) ⊂ k(x̄)). Define

Osh
X,x = lim−→

(U,x̄)

O(U).

Where the limit runs over all étale neighbourhood of geometric points x̄ which are over x.
This is the strict henselianization of the local ring OX,x. The residue field of Osh

X,x is the

separable closure of k(x) in k(x̄). The stalk of a presheaf F at a geometric point x̄ → X
is defined as

Fx̄ = lim−→F(U)

where the limit is taken over all connected étale open U → X which lifts to x̄.
With the notion of stalk, as in the classical case, we can obtain the following equivalent

statements:

Proposition 2.1. [Mil80] Let F , F ′ and F ′′ be étale sheaves over X, then the following
are equivalents
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(1) the sequence

0 → F ′ → F → F ′′ → 0

is exact in the category of étale sheaves over X.
(2) the sequence of abelian groups

0 → F ′
x̄ → Fx̄ → F ′′

x̄ → 0

is a short exact sequence for each geometric point x̄ → X.

Remark 2.2. There is a direct link between étale cohomology and Galois cohomology. Let
k be a field and Spec(k)ét be the small étale site if k. The small category consists of finite
dimensional étale k-algebras, i.e. finite products of finite separable field field extensions of
k. A presheaf P on Spec(k) is a sheaf if for every disjoint union sends

∐
i Spec(ki) to a

direct product of abalian groups and P(k′) = P(k′′)Gal(k′′/k′) with k ⊂ k′ ⊂ k′′ finite Galois
extensions. Choosing a separable closure ks of k, and let Gk = Gal(ks/k). For a sheaf F
we associate a discrete Gk-module as follows

MF := lim−→
k⊂k′⊂ks

F(k′)

where k′ runs over all finite separable extension of k. On the other hand, if M is a discrete
Gk-module we can associate a sheaf over Spec(k)ét in the following way

FM (A) := HomGk-Mod(F (A),M)

with F (A) = Homk-alg(A, k
s) and A is finite dimensional k-algebra. This correspondence

defines an equivalence of categories between the étale sheaves over k and the discrete
Gk-modules.

Since for an étale sheaf F , we have MGk
F = Γ(k,F) then the étale cohomology groups

H i
ét(k,F) are isomorphism to the group cohomology H i(Gk,MF ). Similarly the Ext-

groups Ext(F ,F ′) in the category of étale sheaves over k are isomorphic to the Ext-groups
Ext(MF ,M

′
F ) in the category of discrete Gk-modules.

Example 2.3. Consider the following étale sheaves over X:

(1) Ga,X is the sheaf associated to the presheaf given by Ga,X(Y ) = Γ(Y,OY ).
(2) Gm,X is the sheaf associated to the presheaf given by Gm,X(Y ) = Γ(Y,O∗

Y ).
(3) µn,X for n > 0 is the sheaf associated to the presheaf given by µn,X(Y ) = {x ∈

Γ(Y,O∗
Y ) | xn = 1}.

Suppose that we have continuous morphisms of sites X ′′ π′
−→ X ′ π−→ X and A, B and C

are the categories of sheaves on X ′′, X ′, X respectively. The functor π∗ is exact and has
a right adjoint π∗, thus it sends injectives to injectives (in particular an injective object in
B is G-acyclic) and hence, for every sheaf F on X ′′ we have a spectral sequence (given by
the Grothendieck spectral sequence) called the Leray spectral sequence

Ep,q
2 = (Rpπ∗)(R

qπ′
∗)F =⇒ Rp+q(ππ′)∗F

Some examples of étale cohomology groups:

Example 2.4. (1) The Picard group Pic(X) of a scheme X is the groups of invertible
coherent sheaves of OX -modules, considered up to isomorphism. By this definition
we have that

Pic(X) = H1
zar(X,O∗

X) = H1
zar(X,Gm,X)
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By Hilbert’s Theorem 90, see [Mil80, Prop. III.4.9], the canonical maps induced
by the change of topology

H1
zar(X,Gm,X) → H1

ét(X,Gm,X) → H1
fppf(X,Gm,X)

are isomorphisms.
(2) The Grothendieck-Brauer group or cohomological Brauer group of a scheme X is

defined to be H2
ét(X,Gm,X)

3. Descent theory

Descent theory has the following motivation: Consider a scheme X and a open covering
U = {Ui}i∈I . Consider the following category {(Fi)i∈I , (σi,j)i,j∈I} where Fi is a coherent

sheaf in Ui and for every i, j ∈ I there is an isomorphism σi,j : Fi

∣∣∣
Ui∩Uj

→ Fj

∣∣∣
Ui∩Uj

such

that σi,i = idFi and for every i, j, k ∈ I we have a commutative diagram

Fi

∣∣∣
Uijk

Fj

∣∣∣
Uijk

Fk

∣∣∣
Uijk

σi,k|Uijk

σi,j |Uijk
σj,k|Uijk

where Uijk = Ui ∩ Uj ∩ Uk. The gluing property asserts that this category is equivalent to
the category of quasi-coherent sheaves over X.

To begin with descent theory we mention the following result: considerX and Y schemes
and Y → X a morphism of schemes. Consider the functor

Y : (Sch/X)op → Sets

(U → X) 7→ Y (U) := HomSch/X(U, Y ).

This functor is clearly a presheaf over the category Sch/X, but also a fpqc sheaf for the
category Sch/X.

Theorem 3.1. For any morphism of schemes Y → X, the functor Y defines a sheaf in
the fpqc topology (and therefore is also an étale, fppf, Nisnevich, Zariski,... sheaf) on the
category (Sch/X)op.

The proof of the previous theorem uses the following criterion to get a sheaf in the fpqc
topology:

Lemma 3.2. Let X be a scheme and F : (Sch/X)op → Sets be a presheaf. Suppose that
F satisfies the following two conditions:

(1) F is a sheaf in the big Zariski site of X.
(2) Whenever V → U is faithfully flat of affine X-schemes the following sequence is

exact

F (U) → F (V ) ⇒ F (V ×U V ).

Then F is a sheaf in fpqc topology.

Consider a category C with finite fiber products and let p : F → C be a fibered category
over C. For a morphism f : X → Y ∈ C, we choose a pull-back functor f∗ : F(Y ) → F(X),

and for any morphism we define the category F(X
f−→ Y ) as follows: an element here
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is a pair (E, σ) with E an object in F(X) and σ : pr∗1E → pr∗2E is an isomorphism in
F(X ×Y X) such that the following is a commutative diagram

pr∗12pr
∗
1E pr∗12pr

∗
2E pr∗23pr

∗
1E

pr∗13pr
∗
1E pr∗13pr

∗
2E pr∗23pr

∗
2E,

≃

pr∗12σ ≃

pr∗23σ

pr∗13σ ≃

and a moprhism in F(X
f−→ Y ) between two objects (F, η) → (E, σ) is a morphism g :

E → F in F(X) such that

pr∗1F pr∗1E

pr∗2F pr∗2E

η

pr∗1g

σ

pr∗2g

is a commutative diagram. For (E, σ) ∈ F(X
f−→ Y ) the isomorphism σ is called descent

data for the object E.
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